2004 Vol. 6, No. 14 2409–2411

## Enantioselective Synthesis of $\alpha$ -lonone Derivatives Using an Anti $S_N2'$ Substitution of Functionalized Zinc Organometallics

Darunee Soorukram and Paul Knochel\*

Department Chemie, Ludwig-Maximilians-Universität, Butenandtstrasse 5-13, 81377, München, Germany

paul.knochel@cup.uni-muenchen.de

Received April 28, 2004

## **ABSTRACT**

The allylic substitution of sterically hindered (2-iodocycloalkyl)phosphates proceeds with complete anti  $S_N 2'$  stereoselectivity with mixed diorganozincs of the type RZnCH<sub>2</sub>SiMe<sub>3</sub> in the presence of CuCN·2LiCl. Only the group R of the copper–zinc reagent is transferred in the allylic substitution. This method was used to prepare odoriferous substances such as (R)- $\alpha$ -ionone in 97% ee and (R)-dihydro- $\alpha$ -ionone in 98% ee.

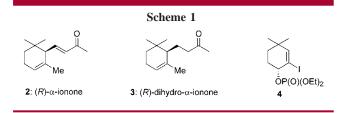
The stereoselective formation of new carbon—carbon bonds is an important research field. Allylic substitutions are especially convenient for transferring the chirality of a C-X bond to a C-C bond. A range of copper- $^1$  and palladium-catalyzed $^2$  stereoselective allylic substitutions have been reported. $^3$  Recently, we have shown that various diorganozines undergo highly stereoselective anti  $S_N2'$  allylic sub-

(1) (a) Lipshutz, B. H.; Sengupta, S. Org. React. 1992, 41, 135. (b) Modern Organocopper Chemistry; Krause, N., Ed.; Wiley-VCH. (c) Ibuka, T.; Nakao, T.; Nishii, S.; Yamamoto, Y. J. Am. Chem. Soc. 1986, 108, 7420. (d) Ibuka, T.; Tanaka, M.; Nishii, S.; Yamamoto, Y. J. Am. Chem. Soc. 1989, 111, 4864. (e) Arai, M.; Kawasuji, T.; Nakamura, E. J. Org. Chem. 1993, 58, 5121. (f) Breit, B.; Demel, P. Adv. Synth. Catal. 2001, 343, 429. (g) Belelie, J. L.; Chong, J. M. J. Org. Chem. 2001, 66, 5552. (h) Smitrovich, J. H.; Woerpel, K. A. J. Org. Chem. 2000, 65, 1601. (i) Spino, C.; Beaulieu, C. J. Am. Chem. Soc. 1998, 120, 11832. (j) Denmark, S. E.; Marble, L. K. J. Org. Chem. 1990, 55, 1984. (k) Alexakis, A.; Croset, K. Org. Lett. 2002, 4, 4147. (l) Malda, H.; van Zijl, A. W.; Arnold, L. A.; Feringa, B. L. Org. Lett. 2001, 3, 1169. (m) Luchaco-Cullis, C. A.; Mizutani, H.; Murphy, K. E.; Hoveyda, A. H. Angew. Chem. 2001, 113, 1504; Angew. Chem., Int. Ed. 2001, 40, 1456. (n) Karlström, A. S. E.; Huerta, F. F.; Meuzelaar, G. J.; Bäckvall, J. E. Synlett 2001, 923.

(2) (a) Trost, B. M.; Hachiya, I. J. Am. Chem. Soc. 1998, 120, 1104. (b) Hayashi, T.; Kawatsura, M.; Uozumi, Y. J. Chem. Soc., Chem. Commun. 1997, 561. (c) Janssen, J. P.; Helmchen, G. Tetrahedron Lett. 1997, 38, 8025. (d) Pretot, R.; Pfaltz, A. Angew. Chem. 1998, 110, 337; Angew. Chem., Int. Ed. Engl. 1998, 37, 323. (e) Helmchen, G.; Pfaltz, A. Acc. Chem. Res. 2000, 33, 336.

stitutions in the presence of  $\text{CuCN} \cdot 2\text{LiCl}^4$  in  $\text{cyclic}^5$  and  $\text{acyclic}^6$  systems. Herein, we wish to demonstrate the remarkable ability of mixed zinc—copper organometallics prepared from mixed diorganozincs  $\text{RZnCH}_2\text{SiMe}_3$  (1)<sup>7</sup> for undergoing  $S_N2'$  substitutions even with sterically hindered systems. As an application, we have prepared via this method (R)- $\alpha$ -ionone 2 in 97% ee and (R)-dihydro- $\alpha$ -ionone 3 in 98% ee starting from the readily available allylic phosphate 48 (Scheme 1).

In a preliminary experiment, we have treated the allylic phosphate **4**<sup>9</sup> with dipentylzinc (2 equiv) and CuCN•2LiCl (1 equiv) in a 3:1 mixture of THF and *N*-methylpyrrolidinone


<sup>(3)</sup> For other transiton metal-catalyzed stereoselective allylations, see for example: (a) Evans, P. A.; Leahy, D. K. J. Am. Chem. Soc. 2003, 125, 8974. (b) Evans, P. A.; Uraguchi, D. J. Am. Chem. Soc. 2003, 125, 7158. (c) Evans, P. A.; Leahy, D. K. J. Am. Chem. Soc. 2002, 124, 7882. (d) Malkov, A. V.; Spoor, P.; Vinader, V.; Kocovsky, P. J. Org. Chem. 1999, 64, 5308. (e) Dvorak, D.; Stary, I.; Kocovsky, P. J. Am. Chem. Soc. 1995, 117, 6130.

<sup>(4)</sup> Knochel, P.; Yeh, M. C. P.; Berk, S. C.; Talbert, J. J. Org. Chem. 1988, 53, 2390.

<sup>(5)</sup> Calaza, M. I.; Hupe, E.; Knochel, P. Org. Lett. 2003, 5, 1059.

<sup>(6)</sup> Harrington-Frost, N.; Leuser, H.; Calaza, M. I.; Kneisel, F. F.; Knochel, P. Org. Lett. 2003, 5, 2111.

<sup>(7)</sup> Berger, S.; Langer, F.; Lutz, C.; Knochel, P.; Mobley, T. A.; Reddy, C. K. *Angew. Chem., Int. Ed. Engl.* **1997**, *36*, 1454.



(NMP) at temperatures from -30 to -10 °C for 14 h and have observed the formation of the anti substitution product 5a in 80% yield and 97% ee. Despite the presence of a quaternary center bearing two methyl groups in the  $\alpha$ -position, only the anti  $S_N2'$  product is obtained and no  $S_N2$  substitution can be detected (Scheme 2). We have briefly examined the

| Scheme 2                          |                                                                                                                                |                                                           |  |  |  |  |
|-----------------------------------|--------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|--|--|--|--|
| ÖP(O)(OEt) <sub>2</sub>           | Pent <sub>2</sub> Zn (2 equiv)  CuCN.2LiCl (1 equiv)  THF:NMP (3:1)  -30 °C to -10 °C, 14 h                                    | Pent<br> <br>  5a: 80%, 97% ee                            |  |  |  |  |
| RZnI + Me                         | $_{23}$ SiCH <sub>2</sub> Li THF $_{-40}$ °C, 1 h                                                                              | RZnCH <sub>2</sub> SiMe <sub>3</sub><br>1a-g              |  |  |  |  |
| ÖP(O)(OEt) <sub>2</sub> 4: 98% ee | RZnCH <sub>2</sub> SiMe <sub>3</sub> (1a-g)<br>(2.4 equiv)<br>CuCN.2LiCl (2.4 equiv)<br>THF:NMP (3:1)<br>-30 °C to rt, 14-48 h | <b>5b-h</b> : 65-90%<br>95-98% <i>ee</i><br>(see Table 1) |  |  |  |  |

use of other leaving groups instead of a phosphate and have prepared the corresponding pentafluorobenzoate of **4**. However, in this case, the desired product was obtained only in 55% yield. Since we planned to perform the allylic substitution with a range of functionalized diorganozincs, <sup>10,11</sup> we have prepared the mixed diorganozincs RZnCH<sub>2</sub>SiMe<sub>3</sub> (**1**), which transfer exclusively the R group to the electrophilic reagent<sup>7,12</sup> by the addition of commercially available solution of Me<sub>3</sub>SiCH<sub>2</sub>Li to the corresponding alkylzinc iodide RZnI (**6**) prepared by the direct insertion of zinc to the alkyl iodide (RI).

The reaction of the mixed zinc reagents 1a-g with the allylic phosphate 4 in the presence of CuCN·2LiCl in 3:1

**Table 1.** Allylic Substitution Products **5b-h** Obtained by the Reaction of the Mixed Diorganozincs **1a-g** with the Allylic Phosphate **4** in the Presence of CuCN•2LiCl

| entry | RZnCH <sub>2</sub> SiMe <sub>3</sub><br>(R)             | product of type 5     | yield<br>(%)* | ее<br>(%) <sup>ь</sup> |
|-------|---------------------------------------------------------|-----------------------|---------------|------------------------|
| 1     | (CH <sub>2</sub> ) <sub>2</sub>                         | Sb Sb                 | 85            | 98                     |
| 2     | NC(CH <sub>2</sub> ) <sub>2</sub>                       | CN                    | 73            | 95                     |
| 3     | 1b EtO <sub>2</sub> C(CH <sub>2</sub> ) <sub>2</sub> 1c | 5c CO <sub>2</sub> Et | 81            | 97                     |
| 4     | $EtO_{2}C(CH_{2})_{3}$ $1d$                             | CO <sub>2</sub> Et    | 82            | 98                     |
| 5     | AcO(CH <sub>2</sub> ) <sub>3</sub>                      | OAc 5f                | 65            | 97                     |
| 6     | $ \bigcap_{O} (CH_2)_2 $ If                             | 5g                    | 90            | 98                     |
| 7     | OCH <sub>2</sub> ) <sub>2</sub>                         | Sh Sh                 | 71            | 98                     |

<sup>a</sup> Isolated yield of analytically pure product. <sup>b</sup> Enantiomeric excess was determined by chiral-GC. In each case, the racemic product was prepared for calibration.

mixtures of THF and NMP at temperatures between -30°C and room temperature for 14-48 h produces the desired  $S_N2'$  substitution products **5b-h**, respectively. These are the only products obtained despite the steric hindrance of the two adjacent methyl groups in yields between 65 and 90% and enantioselectivities of 95-98% (Table 1 and Scheme 2). Excellent transfer of the chirality is observed, and the use of the mixed diorganozincs of type 1 avoids the waste of the polyfunctional zinc reagents 6. Thus, the reaction of 3-butenyl(trimethylsilylmethyl)zinc (1a) with 4 furnishes under our standard conditions (14 h reaction time) the product **5b** in 85 and 98% ee. Remarkably, a range of functionalized zinc reagents (1b-g) can be used as well (entries 2-7). The somewhat unreactive 2-cyanoethyl(trimethylsilylmethyl)zinc (1b) requires a reaction time of 40 h but provides the expected nitrile in 73% yield with a slight erosion of the stereoisomeric purity (95% ee, entry 2). Ester-substituted

2410 Org. Lett., Vol. 6, No. 14, 2004

<sup>(8)</sup> CBS reduction of 4,4-dimethyl-2-iodo-2-cyclohexen-1-one provides 4,4-dimethyl-2-iodo-2-cyclohexen-1-ol in 98% ee and 90% yield (see Supporting Information).

<sup>(9)</sup> Yanagisawa, A.; Noritake, Y.; Nomura, N.; Yamamoto, H. Synlett 1991, 251.

<sup>(10)</sup> Knochel, P.; Millot, N.; Rodriguez, A. L. Org. React. 2001, 58, 417.

<sup>(11)</sup> For previous  $S_N2'$ -selective allylic substitutions using organozinc reagents, see: (a) Sekiya, K.; Nakamura, E. *Tetrahedron Lett.* **1988**, 29, 5155. (b) Nakamura, E.; Mori, S. *Angew. Chem., Int. Ed.* **2000**, 39, 3750. (c) Nakamura, E.; Sekiya, K.; Arai, M.; Aoki, S. *J. Am. Chem. Soc.* **1989**, 111, 3091.

<sup>(12) (</sup>a) Lutz, C.; Knochel, P. *J. Org. Chem.* **1997**, *62*, 7895. (b) Reddy, C. K.; Knochel, P. *Angew. Chem., Int. Ed.* **1996**, *35*, 1700. (c) Bertz, S. H.; Eriksson, M.; Miao, G.; Snyder, J. P. *J. Am. Chem. Soc.* **1996**, *118*, 10906.

diorganozincs such as 1c-e (entries 3–5) react perfectly affording the  $S_N2'$  substitution products (5d-f) in 97–98% ee (entries 3–5). Whereas aldehyde and ketone functionalities are not readily tolerated in this procedure, the use of the corresponding acetal or ketal is perfectly compatible with our mild reaction conditions, leading to the desired  $S_N2'$  substitution products (5g and 5h) in 71–90% yield and 98% ee (entries 6 and 7).

Several of the products of type **5** can be used for the preparation of optically active α-ionone derivatives. This group of natural products having a violet-like odor are formed by the oxidative degradation of carotenes. They are widely distributed in vegetables and fruits, especially in tea and tobacco.<sup>13</sup> Thus, the palladium-catalyzed oxidation of the cyclohexenyl iodide **5b** (PdCl<sub>2</sub> (0.52 equiv), CuCl<sub>2</sub> (1 equiv), O<sub>2</sub>, DMF:H<sub>2</sub>O, 25 °C, 48 h) provides the ketone **7** in 82% yield (98% ee).<sup>14</sup> The reaction of the ketone **7** with MeZnCl (3 equiv) in the presence of Pd(dba)<sub>2</sub> (5 mol %) and bisdiphenylphosphinoferrocene (dppf)<sup>15</sup> (5 mol %) leads to (*R*)-dihydro-α-ionone **3** in 70% yield and 98% ee (Scheme 3).

(R)- $\alpha$ -Ionone (2) is best prepared from the iodoester 5d. Negishi cross-coupling with Me<sub>2</sub>Zn (Pd(dba)<sub>2</sub> (5 mol %, dppf (5 mol %), rt, 26 h) provides the desired methylated product in 81% yield. Reduction of this intermediate to the corresponding alcohol with LiAlH<sub>4</sub> (Et<sub>2</sub>O, 0 °C, 10 min) followed by a reoxidation to the aldehyde 8 under Swern conditions proceeds with an overall yield of 74%. Phenylselenation with PhSeCl and t-BuOK (-78 °C, 5 h) followed by selenium oxidation and elimination (30% aq H<sub>2</sub>O<sub>2</sub>, CH<sub>2</sub>Cl<sub>2</sub>, rt) furnishes the expected unsaturated aldehyde. The synthesis of (R)- $\alpha$ -ionone is completed by the addition of MeMgCl in THF at 0 °C followed by PDC oxidation in DMF, affording (R)- $\alpha$ -ionone (2) in 61% yield and 97% ee. <sup>16</sup> Attempts to use the iodoacetal **5g** as a starting material for the synthesis of (R)- $\alpha$ -ionone (2) was complicated by acid-catalyzed cyclization side-reactions.

(16) (a) Mori, K.; Puapoomchareon, P. *Liebigs Ann. Chem.* **1991**, 1053. (b) Mori, K.; Khlebnikov, V. *Liebigs Ann. Chem.* **1993**, 77. (c) Mori, K. *Synlett* **1995**, 1097.

In summary, we have shown that polyfunctional mixed diorganozinc compounds of the type FG-RZnCH<sub>2</sub>SiMe<sub>3</sub> react with sterically very hindered allylic phosphates, providing anti  $S_N2'$  products with very high regio- and stereoselectivity. We have demonstrated the utility of this procedure by preparing (R)- $\alpha$ -ionone (2) and (R)-dihydro- $\alpha$ -ionone (3).

**Acknowledgment.** We thank the Fonds der Chemischen Industrie for financial support. We thank Boehringer-Ingelheim (Vienna) and Chemetall GmbH (Frankfurt) for the generous financial support and gifts of chemicals.

**Supporting Information Available:** Experimental procedures and analytical data. This material is available free of charge via the Internet at http://pubs.acs.org.

OL049221Q

Org. Lett., Vol. 6, No. 14, 2004

<sup>(13) (</sup>a) Brenna, E.; Fuganti, C.; Serra, S.; Kraft, P. Eur. J. Org. Chem. 2002, 967. (b) Rompp Encyclopedia Natural Products; Steglich, W., Fugmann, B., Lang-Fugmann, S., Eds.; Thieme Verlag: Stuttgart, 2000. (c) See also: Fehr, C.; Galindo, J. Helv. Chim. Acta 1995, 78, 539. (d) Fehr, C. Angew. Chem., Int. Ed. 1996, 35, 2567. (e) Fehr, C.; Guntern, O. Helv. Chim. Acta 1992, 75, 1023.

<sup>(14) (</sup>a) Henry, P. M. In *Handbook of Organopalladium Chemistry for Organic Synthesis*; Negishi, E., Ed.; Wiley-Interscience: New York, 2002; Vol. 2, p 2119. (b) Feringa, B. L. *Transition Metals for Organic Synthesis*; Beller, M., Bolm, C., Eds.; Wiley-VCH: Weinheim, 1998; Vol 2, p 307. (c) Tsuji, J. *Synthesis* 1984, 369.

<sup>(15) (</sup>a) Green, L.; Chauder, B.; Snieckus, V. J. Heterocycl. Chem. 1999, 36, 1453. (b) Negishi, E.; Valente, L. F.; Kobayashi, M. J. Am. Chem. Soc. 1980, 102, 3298. (c) Kobayashi, M.; Negishi, E. J. Org. Chem. 1980, 45, 5223. (d) Negishi, E. Acc. Chem. Res. 1982, 15, 340. (e) Tamaru, Y.; Ochiai, H.; Nakamura, T.; Yoshida, Z. Tetrahedron Lett. 1986, 27, 955. (f) Klement, I.; Rottländer, M.; Tucker, C. E.; Majid, T. N.; Knochel, P.; Venegas, P.; Cahiez, G. Tetrahedron 1996, 52, 7201.

<sup>(17)</sup> **Typical Procedure: Preparation of 5d.** Freshly prepared 2-carboethoxyethyzinc iodide (1.64 M solution in THF, 0.8 mL, 1.2 mmol, 2.4 equiv) was treated with TMSCH<sub>2</sub>Li (1 M in pentane, 1.2 mL, 1.2 mmol, 2.4 equiv) at -40 °C for 1 h and then allowed to warm to -30 °C. To the resulting mixture was added successively a solution of CuCN-2LiCl (1 M solution in THF, 1.2 mL, 1.2 mmol, 2.4 equiv) and NMP (1 mL). The resulting mixture was stirred at -30 °C for 30 min. A THF solution of allylic phosphates (194 mg, 0.5 mmol, 1 equiv) was added, and the reaction mixture was stirred for 45 h while being warmed to 25 °C. The desired product **5d** was obtained after purification by column chromatography (SiO<sub>2</sub>, 10% Et<sub>2</sub>O/pentane) as a colorless oil (134 mg, 81% yield).